This innovative full field transmission x-ray microscope (TXM), funded by the American Reinvestment and Recovery Act, was developed and commissioned at Brookhaven Lab’s National Synchrotron Light Source (NSLS), which provides the x-ray source needed to capture images on the nanoscale. A new paper published in the April 2012 Applied Physics Letters details the experimental success of a breakthrough system that rapidly combines 2D images taken from every angle to form digital 3D constructs.
“We can actually see the internal 3D structure of materials at the nanoscale,” said Brookhaven physicist Jun Wang, lead author of the paper and head of the team that first proposed this TXM. “The device works beautifully, and it overcomes several major obstacles for x-ray microscopes. We’re excited to see the way this technology will push research.”
Wang’s team examined, for example, a 20-micrometer electrode from a lithium-ion battery – as thin around as a human hair. The internal interaction of pores and particles determines the energy performance of the battery, and examining that activity requires precise knowledge of the nanoscale structure.
This 3D reconstruction of a lithium-ion battery electrode, composed of 1,441 individual images captured and aligned by the TXM, reveals nano-scale structural details to help guide future energy research.
No hay comentarios.:
Publicar un comentario