La nanotecnología está logrando avances sorprendentes en diversas áreas de la ciencia. Se define como un campo de las ciencias aplicadas dedicado al control y la manipulación de la materia a una escala menor que un micrómetro, o sea una milésima de milímetro. A este nivel, se están manejan directamente átomos y moléculas.
Existen numerosos ejemplos de nanotecnología aplicada a la sustentabilidad y si bien los desarrollaremos más profundamente en las próximas semanas, citaremos algunos de ellos. Las nanoestructuras, como los "aero-gels" por ejemplo, fueron descubiertas en 1931 y ayudan a conservar energía gracias a su aislación. Además de ser ultra-livianos, son hasta 8 veces más efectivos que la lana de vidrio o espumas de polímero.
A su vez, las celdas solares orgánicas, basadas en nanopartículas y polímeros, estarán pronto disponibles en el mercado e irán reemplazando gradualmente a sus pares de silicio. Estas son mucho más fáciles de fabricar y su flexibilidad aumenta considerablemente las posibilidades de aplicación, como por ejemplo poder colocarlos en el techo de los automóviles.
Los "nanocomposites" son polímeros convencionales a los que se les adiciona nanopartículas para modificar las propiedades. El objetivo es producir materiales más fuertes y livianos. Un ejemplo de su empleo se podrá ver en la piel exterior de los nuevos aviones comerciales, como el Boeing 787, que será fabricada íntegramente por con estos componentes.
Por otro lado, se está investigando intensamente el almacenamiento de energía, es decir el ámbito de las pilas y baterías que pronto estarán en los automóviles como Toyota Prius, un modelo híbrido que se comercializará en nuestro país en el mes de noviembre próximo.
En los vehículos híbridos conviven un motor eléctrico y uno naftero. Con la teconología actual, la carga de la batería de ion-litio del motor eléctrico puede durar hasta 30 minutos ayudando a reducir emisiones... aunque sin duda el porcentaje de tiempo de utilización de su motor naftero es aún muy superior al del eléctrico.
Una batería es cargada por el movimiento de iones de litio desde el cátodo hasta el ánodo. Al reemplazar el electrodo de grafito por uno de silicio, se puede almacenar mucha más energía porque el silicio absorbe una gran cantidad de litio en el proceso de carga.
El Toyota Prius, un vehículo híbrido que emplea el uso de combustible fósil y una batería eléctricaFoto: Toyota
Los ánodos de silicio absorben hasta 10 veces más litio (a nivel masa), pero su volumen también aumenta 4 veces. Esto es un problema porque puede resquebrajar el material y se puede romper la batería después de varias cargas. Al desarrollar un diseño de silicio basado en nanoestructuras, los investigadores de la Universidad de Stanford de California y de la Hanyang University de Corea lograron que el material de silicio pueda soportar las fuerzas.
El ánodo de nanotubos de silicio se parece a un conjunto de pajitas huecas. Se han estudiado los nano-alambres en el pasado, pero los nanotubos tienen una superficie de contacto mucho mayor ya que su superficie interior también está expuesta. Se fabrican sumergiendo repetidamente una matriz de aluminio en una solución de silicio. Luego se calienta y se graba al colocar la solución en un ácido para quitar el aluminio.
El profesor de ingeniería de energía de la Universidad Hanyang, Jaephil Cho, asegura que la matriz ya se encuentra disponible para su uso comercial. Todavía es difícil determinar cuanta incidencia podrá tener este proceso en el costo de las baterías, aunque el multiplicar su capacidad deja lugar a cierto incremento.
Según explica Cho "Esto soluciona solamente la mitad del desafío. Recién cuando se desarrolle un cátodo de características similares, podremos tener automóviles híbridos con una autonomía de su batería de entre 3 y 4 horas en lugar de los actuales 30 minutos".
Los avances en el almacenamiento de energía son sin duda claves en el camino hacia un mundo más sustentable, en el cual debemos minimizar tanto las emisiones de gases de efecto invernadero a través de medios de transporte eléctricos (con electricidad proveniente de fuentes renovables) como la contaminación de las napas de agua proveniente de las baterías que terminan en rellenos sanitarios.
Rodrigo Herrera Vegas es co-fundador de sustentator.org
Existen numerosos ejemplos de nanotecnología aplicada a la sustentabilidad y si bien los desarrollaremos más profundamente en las próximas semanas, citaremos algunos de ellos. Las nanoestructuras, como los "aero-gels" por ejemplo, fueron descubiertas en 1931 y ayudan a conservar energía gracias a su aislación. Además de ser ultra-livianos, son hasta 8 veces más efectivos que la lana de vidrio o espumas de polímero.
A su vez, las celdas solares orgánicas, basadas en nanopartículas y polímeros, estarán pronto disponibles en el mercado e irán reemplazando gradualmente a sus pares de silicio. Estas son mucho más fáciles de fabricar y su flexibilidad aumenta considerablemente las posibilidades de aplicación, como por ejemplo poder colocarlos en el techo de los automóviles.
Los "nanocomposites" son polímeros convencionales a los que se les adiciona nanopartículas para modificar las propiedades. El objetivo es producir materiales más fuertes y livianos. Un ejemplo de su empleo se podrá ver en la piel exterior de los nuevos aviones comerciales, como el Boeing 787, que será fabricada íntegramente por con estos componentes.
Por otro lado, se está investigando intensamente el almacenamiento de energía, es decir el ámbito de las pilas y baterías que pronto estarán en los automóviles como Toyota Prius, un modelo híbrido que se comercializará en nuestro país en el mes de noviembre próximo.
En los vehículos híbridos conviven un motor eléctrico y uno naftero. Con la teconología actual, la carga de la batería de ion-litio del motor eléctrico puede durar hasta 30 minutos ayudando a reducir emisiones... aunque sin duda el porcentaje de tiempo de utilización de su motor naftero es aún muy superior al del eléctrico.
Una batería es cargada por el movimiento de iones de litio desde el cátodo hasta el ánodo. Al reemplazar el electrodo de grafito por uno de silicio, se puede almacenar mucha más energía porque el silicio absorbe una gran cantidad de litio en el proceso de carga.
El Toyota Prius, un vehículo híbrido que emplea el uso de combustible fósil y una batería eléctricaFoto: Toyota
Los ánodos de silicio absorben hasta 10 veces más litio (a nivel masa), pero su volumen también aumenta 4 veces. Esto es un problema porque puede resquebrajar el material y se puede romper la batería después de varias cargas. Al desarrollar un diseño de silicio basado en nanoestructuras, los investigadores de la Universidad de Stanford de California y de la Hanyang University de Corea lograron que el material de silicio pueda soportar las fuerzas.
El ánodo de nanotubos de silicio se parece a un conjunto de pajitas huecas. Se han estudiado los nano-alambres en el pasado, pero los nanotubos tienen una superficie de contacto mucho mayor ya que su superficie interior también está expuesta. Se fabrican sumergiendo repetidamente una matriz de aluminio en una solución de silicio. Luego se calienta y se graba al colocar la solución en un ácido para quitar el aluminio.
El profesor de ingeniería de energía de la Universidad Hanyang, Jaephil Cho, asegura que la matriz ya se encuentra disponible para su uso comercial. Todavía es difícil determinar cuanta incidencia podrá tener este proceso en el costo de las baterías, aunque el multiplicar su capacidad deja lugar a cierto incremento.
Según explica Cho "Esto soluciona solamente la mitad del desafío. Recién cuando se desarrolle un cátodo de características similares, podremos tener automóviles híbridos con una autonomía de su batería de entre 3 y 4 horas en lugar de los actuales 30 minutos".
Los avances en el almacenamiento de energía son sin duda claves en el camino hacia un mundo más sustentable, en el cual debemos minimizar tanto las emisiones de gases de efecto invernadero a través de medios de transporte eléctricos (con electricidad proveniente de fuentes renovables) como la contaminación de las napas de agua proveniente de las baterías que terminan en rellenos sanitarios.
Rodrigo Herrera Vegas es co-fundador de sustentator.org
INFO EXTRAIDA DE http://www.lanacion.com.ar/nota.asp?nota_id=1181692
No hay comentarios.:
Publicar un comentario